Home
Drugs
Targets
Pathways
Ontologies
Cyp450s
Adv.search
Help/FAQ

Drug-Target Interaction

Drug

show drug details
PubChem ID:71273
Structure:
Synonyms:
(+-)-ropivacaine
(-)-1-Propyl-2',6'-dimethyl-2-piperidylcarboxyanilid
(-)-1-Propyl-2',6'-pipecoloxylidide
1-propyl-2',6'-dimethyl-2-piperidylcarboxyanilide
1-propyl-2',6'-pipecoloxylidide
84057-95-4
AB1004866
AC-6967
AC1L2FVE
AC1Q5LX3
AL 381
AL-381
AR-1J7531
C17H26N2O
CHEBI:60802
CID71273
DB00296
DL-ropivacaine
I01-1870
LEA 103
LEA-103
LS-177798
N-(2,6-dimethylphenyl)-1-propyl-piperidine-2-carboxamide
N-(2,6-dimethylphenyl)-1-propylpiperidine-2-carboxamide
N-n-propylpipecolic acid-2,6-xylidide
NAROPIN
rac-ropivacaine
racemic ropivacaine
Ropivacaina
Ropivacaina [INN-Spanish]
Ropivacaina [Spanish]
Ropivacaine
ROPIVACAINE HYDROCHLORIDE MONOHYDRATE
Ropivacaine [INN]
Ropivacainum
Ropivacainum [INN-Latin]
S-Ropivacaine
UNII-7IO5LYA57N
ATC-Codes:
Side-Effects:
Side-EffectFrequency
nervousness0
syncope0
tachycardia0
thrombocytopenia0
tinnitus0
tremor0
unconsciousness0
loss of consciousness0
erythema0
urinary incontinence0
urinary tract infection0
urticaria0
vasovagal reaction0
sneezing0
shock0
seizures0
nightmares0
weakness0
paresthesia0
phlebitis0
pleural effusion0
puncture0
ptosis0
pruritus0
pulmonary embolism0
purpura0
pyuria0
rhinitis0
ventricular fibrillation0
ventricular tachycardia0
myalgia0
tenesmus0
excitement0
hypoxia0
epidural abscess0
blurred vision0
bradycardia0
neuropathy0
paralysis0
increased sweating0
thrombocythemia0
insomnia0
malaise0
respiratory arrest0
hypoglycaemia neonatal0
vertigo0
vomiting0
urinary retention0
chills0
stupor0
agitation0
emotional lability0
peripheral edema0
deep vein thrombosis0
hypomagnesemia0
alkaline phosphatase increased0
sgot increased0
allergic reaction0
abdominal pain0
breast disorders0
bronchospasm0
chest pain0
coma0
confusion0
constipation0
convulsions0
cough0
diarrhea0
dizziness0
somnolence0
dyskinesia0
back pain0
atrial fibrillation0
atelectasis0
acidosis0
albuminuria0
amnesia0
anaphylaxis0
anemia0
angioedema0
anxiety0
apnea0
arachnoiditis0
arrhythmia0
arthralgia0
asthenia0
dyspepsia0
dyspnea0
hypokalemia0
hypotension0
postural hypotension0
hypothermia0
infection0
jaundice0
neonatal jaundice0
leukocytosis0
meningismus0
meningitis0
muscle cramps0
myocardial infarction0
hypocalcemia0
hypertension0
hyperglycemia0
dysuria0
edema0
rash0
fecal incontinence0
fever0
hallucinations0
headache0
cardiac arrest0
heart block0
hematoma0
hematuria0
hemorrhage0
nausea0

Target

show target details
Uniprot ID:CP3A4_HUMAN
Synonyms:
Albendazole monooxygenase
Albendazole sulfoxidase
CYPIIIA3
CYPIIIA4
Cytochrome P450 3A3
Cytochrome P450 3A4
HLp
NF-25
Nifedipine oxidase
P450-PCN1
Quinine 3-monooxygenase
Taurochenodeoxycholate 6-alpha-hydroxylase
EC-Numbers:1.14.13.32
1.14.13.67
1.14.13.97
Organism:Homo sapiens
Human
PDB IDs:1TQN 1W0E 1W0F 1W0G 2J0D 2V0M
Structure:
2V0M

Binding Affinities:

Ki: Kd:Ic 50:Ec50/Ic50:
----
----
----
----
----

References:

011322176
012906753
11996015
12906753
8886604
Ropivacaine, a new amide-type local anesthetic agent, is metabolized by cytochromes P450 1A and 3A in human liver microsomes.. G Ekström; U B Gunnarsson (1996) Drug metabolism and disposition: the biological fate of chemicals display abstract
Ropivacaine is a new amide-type local anesthetic agent. Unlike bupivacaine and mepivacaine, two structurally similar local anesthetic compounds, ropivacaine is exclusively the S-(-)-enantiomer. Ropivacaine is predominantly eliminated by extensive metabolism in the liver, with only 1% of the dose being excreted unchanged in the urine of humans. Four of the metabolites formed in human liver microsomes were identified as 3-OH-ropivacaine, 4-OH-ropivacaine, 2-OH-methyl-ropivacaine, and 2',6'-pipecoloxylidide (PPX). The enzymes involved in the human metabolism of ropivacaine have not been identified. To ascertain which forms of cytochrome P450 are involved, ropivacaine was incubated with human microsomes from 10 different livers having different cytochrome P450 activities. A strong correlation was found between the formation of 3-OH-ropivacaine and CYP1A (r = 0.87-0.89) and between the formation of 4-OH-ropivacaine, 2-OH-ropivacaine, and PPX and CYP3A (r = 0.97-1). Incubation of ropivacaine and human liver microsomes in the presence of alpha-naphthoflavone or furafylline, inhibitors of CYP1A, decreased the formation of 3-OH-ropivacaine by about 85%, without affecting the formation of the other metabolites. The formation of 4-OH-ropivacaine, 2-OH-methyl-ropivacaine, and PPX was markedly inhibited in the presence of troleandomycin, an inhibitor of CYP3A. Microsomes from cells expressing CYP1A2 formed 3-OH-ropivacaine, whereas 4-OH-ropivacaine, 2-OH-methyl-ropivacaine, and PPX were formed in microsomes from cells expressing CYP3A4. Inhibitors of CYP2C (sulfaphenazole), CYP2D6 (quinidine), and 2E1 (diethyldithiocarbamate) did not inhibit the formation of any metabolite from ropivacaine. In conclusion, CYP1A catalyzes the formation of 3-OH-ropivacaine, the main metabolite formed in vivo, whereas the formation of 4-OH-ropivacaine, 2-OH-methyl-ropivacaine, and PPX was catalyzed by CYP3A.