Home
Drugs
Targets
Pathways
Ontologies
Cyp450s
Adv.search
Help/FAQ

Drug-Target Interaction

Drug

show drug details
PubChem ID:4553
Structure:
Synonyms:
123653-11-2
AC1L1IF7
AC1Q20LP
AR-1K3665
Bio2_000472
Bio2_000952
BRD-K53364951-001-02-6
BSPBio_001264
C080955
C13H18N2O5S
CCRIS 8523
CHEBI:101699
CHEMBL7162
HMS1362P05
HMS1792P05
HMS1990P05
I14-10018
IDI1_002227
IN1319
KBio2_000604
KBio2_003172
KBio2_005740
KBio3_001067
KBio3_001068
KBioGR_000604
KBioSS_000604
LS-90104
Methanesulfonamide, N-(2-(cyclohexyloxy)-4-nitrophenyl)-
N-(2-Cyclohexyloxy-4-nitrophenyl)methanesulfonamide
N-[2-(Cyclohexyloxy)-4-nitrophenyl]methanesulfonamide
N194_SIGMA
NCGC00024892-01
NCGC00024892-02
NCGC00024892-03
nchembio.147-comp10
NS 398
NS-398
NS398
NS4
Tocris-0942
ZINC03791739

Target

show target details
Uniprot ID:RENI_RAT
Synonyms:
Angiotensinogenase
Renin
EC-Numbers:3.4.23.15
Organism:Rat
Rattus norvegicus
PDB IDs:-

Binding Affinities:

Ki: Kd:Ic 50:Ec50/Ic50:
----
----

References:

12429553
Role of macula densa cyclooxygenase-2 in renovascular hypertension.. Andrea Hartner; Nada Cordasic; Margarete Goppelt-Struebe; Roland Veelken; Karl F Hilgers (2003) American journal of physiology. Renal physiology display abstract
Upregulation of the inducible cyclooxygenase (COX-2) in the macula densa accompanies the activation of the juxtaglomerular apparatus in many high-renin conditions. The functional role of COX-2 in these disease states is poorly understood. We tested whether COX-2 is required to increase renin in renovascular hypertension. Rats with established two-kidney, one-clip (2K1C) hypertension were treated for 2 wk with two different inhibitors of COX-2, NS-398 and rofecoxib, respectively. Hypertension in 2K1C rats was not affected or slightly enhanced by COX-2 inhibition, as measured intra-arterially in conscious animals. The increase in plasma renin activity was also unchanged by both rofecoxib and NS-398. The number of glomeruli with a renin-positive juxtaglomerular apparatus was elevated in clipped kidneys and decreased in contralateral kidneys of 2K1C rats. This pattern was unaltered by COX-2 inhibition. To test the effects of COX-2 blockade on a primarily macula densa-mediated stimulus, we studied salt depletion for comparison. A low-salt diet induced a significant increase in plasma renin activity, which was partially inhibited by treatment with NS-398. We conclude that inhibition of COX-2 in established renovascular hypertension does not affect renin synthesis or release. Thus either COX-2 is not necessary for the macula densa mechanism or the macula densa is not important for maintaining high renin in renovascular hypertension.
12484518
Cyclooxygenase-2 inhibitors attenuate increased blood pressure in renovascular hypertensive models, but not in deoxycorticosterone-salt hypertension.. Toshiaki Okumura; Izumi Hayashi; Tomoaki Ikezawa; Mariko Yamanaka; Tesshu Takata; Yoshikuni Fujita; Katsunori Saigenji; Shohei Yamashina; Masataka Majima (2002) Hypertension research : official journal of the Japanese Society of Hypertension display abstract
COX-2 is an inducible cyclooxygenase (COX) that has been reported to be expressed in the macula densa and surrounding cortical thick ascending limb in normotensive rats. The present study assessed the contribution of COX-2 in three different rat models of hypertension, each characterized by a different activation of the renal renin-angiotensin system. Mean blood pressure (MBP) in the rat 2 kidney-1 clip (2K1C) model was significantly reduced with a COX-2 selective inhibitor, NS-398 (10 mg/kg, p.o., twice a day) (vehicle-administered rats (n = 8): 154 +/- 6 mmHg; NS-398-administered rats (n = 5): 128 +/- 10 mmHg). By contrast, a COX-1 selective inhibitor, mofezolac, did not lower MBP. Increased plasma renin activity (23 +/- 8 ng/kg/h (n = 6) vs. sham operation, 2.4 +/- 0.9 ng/kg/h (n = 4)) was markedly reduced to 6.8 +/- 2.7 ng/ml/h (n = 5) by NS-398, but not by mofezolac. The development of 1 kidney-1 clip (1K1C) hypertension was also inhibited by NS-398 (vehicle (n = 12): 133 +/- 1 mmHg; NS-398 (n = 7): 122 +/- 3 mmHg) accompanied by a reduction in plasma renin activity (3.0 +/- 0.3 ng/ml/h, n = 4) to 1.0 +/- 0.2 ng/ml/h (n = 5). The COX-2 inhibitor increased urinary excretions in the 1K1C model, but not in the 2K1C model. In a deoxycorticosterone acetate (DOCA)-salt model, plasma renin activity was markedly suppressed to less than 0.3 ng/ml/h. The COX-2 inhibitor caused no significant changes in MBP, plasma renin activity, or urinary excretion, suggesting that COX-2 made a lesser contribution in this model. Increased expression of COX-2 mRNA and protein was observed in the kidneys of 1K1C and 2K1C rats, but not in DOCA-salt rats. These results suggest that COX-2 plays a significant role in the development of 2K1C and 1K1C renovascular hypertension, in addition to making a substantial contribution to the diuretic effect in the 1K1C model.