Home
Drugs
Targets
Pathways
Ontologies
Cyp450s
Adv.search
Help/FAQ

Drug-Target Interaction

Drug

show drug details
PubChem ID:4553
Structure:
Synonyms:
123653-11-2
AC1L1IF7
AC1Q20LP
AR-1K3665
Bio2_000472
Bio2_000952
BRD-K53364951-001-02-6
BSPBio_001264
C080955
C13H18N2O5S
CCRIS 8523
CHEBI:101699
CHEMBL7162
HMS1362P05
HMS1792P05
HMS1990P05
I14-10018
IDI1_002227
IN1319
KBio2_000604
KBio2_003172
KBio2_005740
KBio3_001067
KBio3_001068
KBioGR_000604
KBioSS_000604
LS-90104
Methanesulfonamide, N-(2-(cyclohexyloxy)-4-nitrophenyl)-
N-(2-Cyclohexyloxy-4-nitrophenyl)methanesulfonamide
N-[2-(Cyclohexyloxy)-4-nitrophenyl]methanesulfonamide
N194_SIGMA
NCGC00024892-01
NCGC00024892-02
NCGC00024892-03
nchembio.147-comp10
NS 398
NS-398
NS398
NS4
Tocris-0942
ZINC03791739

Target

show target details
Uniprot ID:RENI2_MOUSE
Synonyms:
Angiotensinogenase
Renin-2
Submandibular gland renin
EC-Numbers:3.4.23.15
Organism:Mouse
Mus musculus
PDB IDs:1SMR
Structure:
1SMR

Binding Affinities:

Ki: Kd:Ic 50:Ec50/Ic50:
----

References:

9039118
Cyclooxygenase-2 mediates increased renal renin content induced by low-sodium diet.. P Harding; D H Sigmon; M E Alfie; P L Huang; M C Fishman; W H Beierwaltes; O A Carretero (1997) Hypertension display abstract
We hypothesized that neuronal nitric oxide synthase and cyclooxygenase-2, which both exist in the renal cortex, predominantly in the macula densa, play a role in the control of renal renin tissue content. We studied the possible role of neuronal nitric oxide synthase in regulating renal renin content by using mice in which the neuronal nitric oxide synthase gene has been disrupted (nNOS-/-) compared with its two progenitor strains, the 129/SvEv and the C57BL/6, to determine if the absence of neuronal nitric oxide synthase would result in decreased renal renin content or blunt the increase observed during low sodium intake. Renal renin content from cortical slices was determined in adult mice from all three strains maintained on a normal sodium diet. Renal renin content was significantly reduced in the nNOS-/- mice compared with the 129/SvEv and the C57BL/6 mice (3.11 +/- 0.23 versus 5.66 +/- 0.50 and 7.55 +/- 1.17 micrograms angiotensin l/mg dry weight, respectively; P < .005), suggesting that neuronal nitric oxide synthase may stimulate renal renin content under basal conditions. Neither selective pharmacological inhibition of neuronal nitric oxide synthase using 7-nitroindazole or disruption of the neuronal nitric oxide synthase gene affected the increase in renal content observed during dietary sodium restriction. The influence of cyclooxygenase-2 on renal renin content through a macula densa-mediated pathway was studied using a selective cyclooxygenase-2 inhibitor, NS398, in 129/SvEv mice. A low-sodium diet increased renal renin content from 6.97 +/- 0.52 to 11.59 +/- 0.79 micrograms angiotensin l/mg dry weight (P < .005); but this increase was blocked by NS398. In addition, treatment with NS398 reduced renin mRNA in response to a low-sodium diet. Thus, increased renal renin content in response to dietary sodium restriction appears to require the induction of cyclooxygenase-2, while neuronal nitric oxide synthase appears to affect basal but not stimulated renal renin content.