Home
Drugs
Targets
Pathways
Ontologies
Cyp450s
Adv.search
Help/FAQ

Drug-Target Interaction

Drug

show drug details
PubChem ID:289
Structure:
Synonyms:
1,2-benzenediol
1,2-dihydroxybenzene
1,3-dihydroxybenzene
120-80-9
12385-08-9
135011_SIAL
16474-89-8
16474-90-1
2-(5,8-Dihydroxy-1-methoxy-3-methyl(2-naphthyl))-5-methoxy-7-methylnaphthalene-1,4-diol
2-hydroxyphenol
20244-21-7
20244-21-7 (unspecified hydrochloride salt)
37349-32-9
4-06-00-05557 (Beilstein Handbook Reference)
430749_ALDRICH
430749_SIAL
AB-131/40235236
AB1002105
AC1L18WM
AC1Q78GA
AG-D-45381
AI3-03995
AIDS-108194
AIDS108194
AKOS000119002
alpha-hydroxyphenol
BBL002408
BB_NC-2239
Benzcatechin
Benzene, o-dihydroxy-
benzene-1,2-diol
benzenediol
BIDD:ER0327
bmse000385
Brenzcatechin
BRN 0471401
C 9510
C.I. 76500
C.I. Oxidation Base 26
C00090
c0097
C01785
C034221
C15571
C3561_SIAL
C9510_SIAL
C9593_SIGMA
CAQ
Catechin
Catechin (phenol)
CATECHOL
Catechol (phenol)
catechol dipotassium salt
catechol sodium salt
catechol, 14C-labeled cpd
Catechol-pyrocatechol
Catechol-UL-14C
CCG-204375
CCRIS 741
CHEBI:18135
CHEMBL280998
CI 76500
CI Oxidation Base 26
DB02232
Dihydroxybenzene
Durafur developer C
Durafur Developer CFouramine PCH
EINECS 204-427-5
EU-0100280
Fouramine PCH
Fourrine 68
HMS2233A17
HMS3260H22
HSDB 1436
I01-2906
Katechol
Katechol [Czech]
Lopac-C-9510
Lopac0_000280
LS-637
MLS002153385
MLS002303022
MolPort-000-871-939
NCGC00015283-01
NCGC00015283-02
NCGC00015283-03
NCGC00015283-04
NCGC00015283-05
NCGC00015283-06
NCGC00015283-07
NCGC00015283-08
NCGC00091262-01
NCGC00091262-02
NCGC00091262-03
nchembio801-comp10
NCI-C55856
NSC 1573
NSC1573
o Dihydroxybenzene
o-Benzenediol
o-Dihydroxybenzene
o-Dioxybenzene
o-Diphenol
o-Hydroquinone
o-Hydroxyphenol
o-Phenylenediol
ortho-Benzenediol
ortho-Dihydroxybenzene
ortho-Dioxybenzene
ortho-Hydroquinone
ortho-Hydroxyphenol
ortho-Phenylenediol
Oxyphenic acid
P0317
P0567
Pelagol Grey C
phenol derivative, 2
Phthalhydroquinone
pyrocatechin
Pyrocatechine
Pyrocatechinic acid
Pyrocatechinic acidPyrocatechol
pyrocatechol
pyrocatechol-ul-14C
Pyrocatechuic acid
Pyrokatechin
Pyrokatechin [Czech]
Pyrokatechol
Pyrokatechol [Czech]
SMR000326660
ST5214346
STK398651
WLN: QR BQ
ZINC13512214

Target

show target details
Uniprot ID:Q9Y354_HUMAN
Synonyms:
Matrix metalloproteinase 9
EC-Numbers:3.4.24.35
Organism:Homo sapiens
Human
PDB IDs:-

Binding Affinities:

Ki: Kd:Ic 50:Ec50/Ic50:
----
----
----

References:

11241252
Tumor gelatinases and invasion inhibited by the green tea flavanol epigallocatechin-3-gallate.. S Garbisa; L Sartor; S Biggin; B Salvato; R Benelli; A Albini (2001) Cancer display abstract
BACKGROUND: Given the association of consumption of green tea with prevention of cancer development, metastasis, and angiogenesis, the effect of the main flavanol present, epigallocatechin-3-gallate (EGCG), on two gelatinases most frequently overexpressed in cancer and angiogenesis (MMP-2 and MMP-9) and on tumor cell invasion and chemotaxis were examined. METHODS: Zymography, Western blotting, and enzyme linked immuoadsorbent assay were used to analyze the effect of EGCG on MMP-2 and MMP-9 activity, whereas its effect on tumor cell invasion and chemotaxis was examined using modified Boyden chamber assays. RESULTS: A Zn2+ chelation-independent, dose-dependent, noncompetitive inhibition by EGCG of both gelatinases was found at concentrations 500 times lower than that reported to inhibit urokinase. Tumor cell invasion of a reconstituted basement membrane matrix, but not chemotaxis, was reduced by 50% with EGCG concentrations equivalent to that in the plasma of moderate green tea drinkers, and 2 orders of magnitude below those of tissue inhibitors of MMPs. Although higher concentrations of EGCG were associated with increased levels of both cell-associated gelatinases and their activator MT1-MMP, no increased gelatinase activation was found, and TIMP-1 and TIMP-2 inhibitors were up-regulated. Finally, concentrations of EGCG active in restraining proliferation and inducing apoptosis of transformed cells were more than 100 times lower than those reported for normal cells. CONCLUSIONS: Epigallocatechin-3-gallate is a potent inhibitor of gelatinases and an orally available pharmacologic agent that may confer the antiangiogenic and antimetastatic activity associated with green tea.
12643642
Association of suppression of extracellular signal-regulated kinase phosphorylation by epigallocatechin gallate with the reduction of matrix metalloproteinase activities in human fibrosarcoma HT1080 cells.. Mari Maeda-Yamamoto; Naoko Suzuki; Yoshinori Sawai; Toshio Miyase; Mitsuaki Sano; Akiko Hashimoto-Ohta; Mamoru Isemura (2003) Journal of agricultural and food chemistry display abstract
Matrix metalloproteinases (MMPs) play a crucial role in the process of cancer invasion and metastasis. Previous findings suggested that epigallocatechin gallate (EGCG), a main flavanol of green tea, caused decreased levels of MMP-2 and MMP-9 activities to be secreted into culture medium. To obtain further information on EGCG-mediated regulation of these MMPs, the effects of EGCG on enzyme activity, mRNA expression, and mitogen-activated protein kinase (MAPK) activities in human fibrosarcoma HT1080 cells were examined. EGCG was confirmed to suppress the gelatin-degrading activities due to MMP-2 and MMP-9 in the culture medium. This suppression of enzyme activities by EGCG was consistent with the decreased levels of MMP-2 and MMP-9 mRNAs. EGCG-mediated suppression was also observed for MT1-MMP mRNA. EGCG-mediated suppression of the level of MMP-9 transcript was correlated with its suppression of MMP-9 promoter activity. EGCG inhibited the phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), which are the members of an MAPK family necessary for MMP-9 up-regulation. EGCG also suppressed p38 MAPK activity but gave no effects on stress-activated protein kinase/c-Jun N-terminal kinase activity. These findings suggest that suppression of ERK phosphorylation by EGCG is involved in the inhibition of expression for MMP-2 and MMP-9 mRNAs, leading to the reduction of their enzyme activities of the cancer cells. Methyl derivatives, epigallocatechin-3-O-(3-O-methyl) gallate and epigallocatechin-3-O-(4-O-methyl) gallate, exhibited effects similar to, but weaker than, those of EGCG, suggesting the important role of an unsubstituted triphenolic ester structure in these activities.
15795102
Repressions of MMP-9 expression and NF-kappa B localization are involved in inhibition of lung carcinoma 95-D cell invasion by (-)-epigallocatechin-3-gallate.. Jingya Yang; Dongzhi Wei; Jianwen Liu (2005) Biomedicine & pharmacotherapy display abstract
Epigallocatechin-3-gallate (EGCG) repressed the invasion of lung carcinoma 95-D cells in invasion assay. RT-PCR analysis illuminated that 40 microM EGCG down-regulated the expression of MMP-9 by 45.7% and the result of Western blot analysis provided further evidence. NF-kappa B localized in the nucleus of the 95-D cells was diminished in a dose-dependent manner in EGCG-treated cells as shown by Western blot. Intracellular oxidants were more abundant in invasive cells than in invasion-suppressed cells fed with EGCG for 18 h. Thus, the inhibition of tumor invasion by EGCG was shown to be attributed to decreases of the expression of MMP-9 and NF-kappa B, which may result from decrease of intracellular oxidants.