Home
Drugs
Targets
Pathways
Ontologies
Cyp450s
Adv.search
Help/FAQ

Drug-Target Interaction

Drug

show drug details
PubChem ID:289
Structure:
Synonyms:
1,2-benzenediol
1,2-dihydroxybenzene
1,3-dihydroxybenzene
120-80-9
12385-08-9
135011_SIAL
16474-89-8
16474-90-1
2-(5,8-Dihydroxy-1-methoxy-3-methyl(2-naphthyl))-5-methoxy-7-methylnaphthalene-1,4-diol
2-hydroxyphenol
20244-21-7
20244-21-7 (unspecified hydrochloride salt)
37349-32-9
4-06-00-05557 (Beilstein Handbook Reference)
430749_ALDRICH
430749_SIAL
AB-131/40235236
AB1002105
AC1L18WM
AC1Q78GA
AG-D-45381
AI3-03995
AIDS-108194
AIDS108194
AKOS000119002
alpha-hydroxyphenol
BBL002408
BB_NC-2239
Benzcatechin
Benzene, o-dihydroxy-
benzene-1,2-diol
benzenediol
BIDD:ER0327
bmse000385
Brenzcatechin
BRN 0471401
C 9510
C.I. 76500
C.I. Oxidation Base 26
C00090
c0097
C01785
C034221
C15571
C3561_SIAL
C9510_SIAL
C9593_SIGMA
CAQ
Catechin
Catechin (phenol)
CATECHOL
Catechol (phenol)
catechol dipotassium salt
catechol sodium salt
catechol, 14C-labeled cpd
Catechol-pyrocatechol
Catechol-UL-14C
CCG-204375
CCRIS 741
CHEBI:18135
CHEMBL280998
CI 76500
CI Oxidation Base 26
DB02232
Dihydroxybenzene
Durafur developer C
Durafur Developer CFouramine PCH
EINECS 204-427-5
EU-0100280
Fouramine PCH
Fourrine 68
HMS2233A17
HMS3260H22
HSDB 1436
I01-2906
Katechol
Katechol [Czech]
Lopac-C-9510
Lopac0_000280
LS-637
MLS002153385
MLS002303022
MolPort-000-871-939
NCGC00015283-01
NCGC00015283-02
NCGC00015283-03
NCGC00015283-04
NCGC00015283-05
NCGC00015283-06
NCGC00015283-07
NCGC00015283-08
NCGC00091262-01
NCGC00091262-02
NCGC00091262-03
nchembio801-comp10
NCI-C55856
NSC 1573
NSC1573
o Dihydroxybenzene
o-Benzenediol
o-Dihydroxybenzene
o-Dioxybenzene
o-Diphenol
o-Hydroquinone
o-Hydroxyphenol
o-Phenylenediol
ortho-Benzenediol
ortho-Dihydroxybenzene
ortho-Dioxybenzene
ortho-Hydroquinone
ortho-Hydroxyphenol
ortho-Phenylenediol
Oxyphenic acid
P0317
P0567
Pelagol Grey C
phenol derivative, 2
Phthalhydroquinone
pyrocatechin
Pyrocatechine
Pyrocatechinic acid
Pyrocatechinic acidPyrocatechol
pyrocatechol
pyrocatechol-ul-14C
Pyrocatechuic acid
Pyrokatechin
Pyrokatechin [Czech]
Pyrokatechol
Pyrokatechol [Czech]
SMR000326660
ST5214346
STK398651
WLN: QR BQ
ZINC13512214

Target

show target details
Uniprot ID:Q9BXH2_HUMAN
Synonyms:
STAT3
EC-Numbers:-
Organism:Homo sapiens
Human
PDB IDs:-

Binding Affinities:

Ki: Kd:Ic 50:Ec50/Ic50:
----

References:

12440226
Epigallocatechin-3-gallate decreases VEGF production in head and neck and breast carcinoma cells by inhibiting EGFR-related pathways of signal transduction.. Muneyuki Masuda; Masumi Suzui; Jin T E Lim; Atsuko Deguchi; Jae-Won Soh; I Bernard Weinstein (2002) Journal of experimental therapeutics & oncology display abstract
In a recent study on head and neck squamous cell carcinoma (HNSCC) cells we found that epigallocatechin-3-gallate (EGCG), a major biologically active component of green tea, inhibited activation of the epidermal growth factor receptor (EGFR) and related signaling pathways. Since activation of EGFR signaling pathways is associated with angiogenesis, we examined the effects of EGCG on vascular endothelial growth factor (VEGF) production by YCU-H891 HNSCC and MDA-MB-231 breast carcinoma cell lines, because we found that both of these cell lines display autocrine activation of transforming growth factor-alpha (TGF-alpha)/EGFR signaling and produce high levels of VEGF. Treatment with EGCG inhibited the constitutive activation of the EGFR, Stat3, and Akt in both cell lines. These changes were associated with inhibition of VEGF promoter activity and cellular production of VEGF. Mechanistic studies indicated that inhibition of Stat3, but not mitogen-activated protein kinase kinase (MEK)1 or phosphatidylinositol 3'-kinase (PI3K), significantly decreased VEGF promoter activity. However, the inhibitory effects of a dominant negative Stat3 on VEGF expression was not as strong as that produced by EGCG. An analysis of alternative pathways indicated that EGCG strongly inhibited the constitutive activation of NF-kappa B in both cell lines, and an NF-kappa B inhibitor strongly inhibited VEGF production. These results suggest that EGCG inhibits VEGF production by inhibiting both the constitutive activation of Stat3 and NF-kappa B, but not extracellular-signal-regulated kinase (ERK) or Akt, in these cells. Therefore, EGCG may be useful in treating HNSCC and breast carcinoma because it can exert both antiproliferative and antiangiogenic activities.