Home
Drugs
Targets
Pathways
Ontologies
Cyp450s
Adv.search
Help/FAQ

Drug-Target Interaction

Drug

show drug details
PubChem ID:289
Structure:
Synonyms:
1,2-benzenediol
1,2-dihydroxybenzene
1,3-dihydroxybenzene
120-80-9
12385-08-9
135011_SIAL
16474-89-8
16474-90-1
2-(5,8-Dihydroxy-1-methoxy-3-methyl(2-naphthyl))-5-methoxy-7-methylnaphthalene-1,4-diol
2-hydroxyphenol
20244-21-7
20244-21-7 (unspecified hydrochloride salt)
37349-32-9
4-06-00-05557 (Beilstein Handbook Reference)
430749_ALDRICH
430749_SIAL
AB-131/40235236
AB1002105
AC1L18WM
AC1Q78GA
AG-D-45381
AI3-03995
AIDS-108194
AIDS108194
AKOS000119002
alpha-hydroxyphenol
BBL002408
BB_NC-2239
Benzcatechin
Benzene, o-dihydroxy-
benzene-1,2-diol
benzenediol
BIDD:ER0327
bmse000385
Brenzcatechin
BRN 0471401
C 9510
C.I. 76500
C.I. Oxidation Base 26
C00090
c0097
C01785
C034221
C15571
C3561_SIAL
C9510_SIAL
C9593_SIGMA
CAQ
Catechin
Catechin (phenol)
CATECHOL
Catechol (phenol)
catechol dipotassium salt
catechol sodium salt
catechol, 14C-labeled cpd
Catechol-pyrocatechol
Catechol-UL-14C
CCG-204375
CCRIS 741
CHEBI:18135
CHEMBL280998
CI 76500
CI Oxidation Base 26
DB02232
Dihydroxybenzene
Durafur developer C
Durafur Developer CFouramine PCH
EINECS 204-427-5
EU-0100280
Fouramine PCH
Fourrine 68
HMS2233A17
HMS3260H22
HSDB 1436
I01-2906
Katechol
Katechol [Czech]
Lopac-C-9510
Lopac0_000280
LS-637
MLS002153385
MLS002303022
MolPort-000-871-939
NCGC00015283-01
NCGC00015283-02
NCGC00015283-03
NCGC00015283-04
NCGC00015283-05
NCGC00015283-06
NCGC00015283-07
NCGC00015283-08
NCGC00091262-01
NCGC00091262-02
NCGC00091262-03
nchembio801-comp10
NCI-C55856
NSC 1573
NSC1573
o Dihydroxybenzene
o-Benzenediol
o-Dihydroxybenzene
o-Dioxybenzene
o-Diphenol
o-Hydroquinone
o-Hydroxyphenol
o-Phenylenediol
ortho-Benzenediol
ortho-Dihydroxybenzene
ortho-Dioxybenzene
ortho-Hydroquinone
ortho-Hydroxyphenol
ortho-Phenylenediol
Oxyphenic acid
P0317
P0567
Pelagol Grey C
phenol derivative, 2
Phthalhydroquinone
pyrocatechin
Pyrocatechine
Pyrocatechinic acid
Pyrocatechinic acidPyrocatechol
pyrocatechol
pyrocatechol-ul-14C
Pyrocatechuic acid
Pyrokatechin
Pyrokatechin [Czech]
Pyrokatechol
Pyrokatechol [Czech]
SMR000326660
ST5214346
STK398651
WLN: QR BQ
ZINC13512214

Target

show target details
Uniprot ID:Q99MH2_MOUSE
Synonyms:
Cyclooxygenase 2
EC-Numbers:-
Organism:Mouse
Mus musculus
PDB IDs:-

Binding Affinities:

Ki: Kd:Ic 50:Ec50/Ic50:
----

References:

14609132
Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 activity by 1,2,3,4,6-penta-O-galloyl-beta-D-glucose in murine macrophage cells.. Sung-Jin Lee; Ik-Soo Lee; Woongchon Mar (2003) Archives of pharmacal research display abstract
Activated macrophages express inducible isoforms of nitric oxide synthase (iNOS) and cyclooxygenase (COX-2), and produce excessive amounts of nitric oxide (NO) and prostaglandin E2 (PGE2), which play key roles in the processes of inflammation and carcinogenesis. The root of Paeonia lactiflora Pall., and the root cortex of Paeonia suffruticosa Andr., are important Chinese crude drugs used in many traditional prescriptions. 1,2,3,4,6-penta-O-galloyl-beta-D-glucose (PGG) is a major bioactive constituent of both crude drugs. PGG has been shown to possess potent anti-oxidant, anti-mutagenic, anti-proliferative and anti-invasive effects. In this study, we examined the inhibitory effects of 1,2,3,4,6-penta-O-galloyl-beta-D-glucose (PGG) isolated from the root of Paeonia lactiflora Pall. on the COX-2 and iNOS activity in LPS-activated Raw 264.7 cells, COX-1 in HEL cells. To investigate the structure-activity relationships of gallate and gallic acid for the inhibition of iNOS and COX-2 activity, we also examined (-)-epigallocatechin gallate (EGCG), gallic acid, and gallacetophenone. The results of the present study indicated that PGG, EGCG, and gallacetophenone treatment except gallic acid significantly inhibited LPS-induced NO production in LPS-activated macrophages. All of the four compounds significantly inhibited COX-2 activity in LPS-activated macrophages. Among the four compounds examined, PGG revealed the most potent in both iNOS (IC50 approximately 18 microg/mL) and COX-2 inhibitory activity (PGE2: IC50 approximately 8 microg/mL and PGD2: IC50 approximately 12 microg/mL), respectively. Although further studies are needed to elucidate the molecular mechanisms and structure-activity relationship by which PGG exerts its inhibitory actions, our results suggest that PGG might be a candidate for developing anti-inflammatory and cancer chemopreventive agents.