Home
Drugs
Targets
Pathways
Ontologies
Cyp450s
Adv.search
Help/FAQ

Drug-Target Interaction

Drug

show drug details
PubChem ID:289
Structure:
Synonyms:
1,2-benzenediol
1,2-dihydroxybenzene
1,3-dihydroxybenzene
120-80-9
12385-08-9
135011_SIAL
16474-89-8
16474-90-1
2-(5,8-Dihydroxy-1-methoxy-3-methyl(2-naphthyl))-5-methoxy-7-methylnaphthalene-1,4-diol
2-hydroxyphenol
20244-21-7
20244-21-7 (unspecified hydrochloride salt)
37349-32-9
4-06-00-05557 (Beilstein Handbook Reference)
430749_ALDRICH
430749_SIAL
AB-131/40235236
AB1002105
AC1L18WM
AC1Q78GA
AG-D-45381
AI3-03995
AIDS-108194
AIDS108194
AKOS000119002
alpha-hydroxyphenol
BBL002408
BB_NC-2239
Benzcatechin
Benzene, o-dihydroxy-
benzene-1,2-diol
benzenediol
BIDD:ER0327
bmse000385
Brenzcatechin
BRN 0471401
C 9510
C.I. 76500
C.I. Oxidation Base 26
C00090
c0097
C01785
C034221
C15571
C3561_SIAL
C9510_SIAL
C9593_SIGMA
CAQ
Catechin
Catechin (phenol)
CATECHOL
Catechol (phenol)
catechol dipotassium salt
catechol sodium salt
catechol, 14C-labeled cpd
Catechol-pyrocatechol
Catechol-UL-14C
CCG-204375
CCRIS 741
CHEBI:18135
CHEMBL280998
CI 76500
CI Oxidation Base 26
DB02232
Dihydroxybenzene
Durafur developer C
Durafur Developer CFouramine PCH
EINECS 204-427-5
EU-0100280
Fouramine PCH
Fourrine 68
HMS2233A17
HMS3260H22
HSDB 1436
I01-2906
Katechol
Katechol [Czech]
Lopac-C-9510
Lopac0_000280
LS-637
MLS002153385
MLS002303022
MolPort-000-871-939
NCGC00015283-01
NCGC00015283-02
NCGC00015283-03
NCGC00015283-04
NCGC00015283-05
NCGC00015283-06
NCGC00015283-07
NCGC00015283-08
NCGC00091262-01
NCGC00091262-02
NCGC00091262-03
nchembio801-comp10
NCI-C55856
NSC 1573
NSC1573
o Dihydroxybenzene
o-Benzenediol
o-Dihydroxybenzene
o-Dioxybenzene
o-Diphenol
o-Hydroquinone
o-Hydroxyphenol
o-Phenylenediol
ortho-Benzenediol
ortho-Dihydroxybenzene
ortho-Dioxybenzene
ortho-Hydroquinone
ortho-Hydroxyphenol
ortho-Phenylenediol
Oxyphenic acid
P0317
P0567
Pelagol Grey C
phenol derivative, 2
Phthalhydroquinone
pyrocatechin
Pyrocatechine
Pyrocatechinic acid
Pyrocatechinic acidPyrocatechol
pyrocatechol
pyrocatechol-ul-14C
Pyrocatechuic acid
Pyrokatechin
Pyrokatechin [Czech]
Pyrokatechol
Pyrokatechol [Czech]
SMR000326660
ST5214346
STK398651
WLN: QR BQ
ZINC13512214

Target

show target details
Uniprot ID:C6EHC1_ECOBD
Synonyms:
3-oxoacyl-(Acyl-carrier-protein) reductase
3-oxoacyl-[acyl-carrier-protein] reductase
EC-Numbers:1.1.1.100
Organism:Escherichia coli
strain B / BL21-DE3
PDB IDs:-

Binding Affinities:

Ki: Kd:Ic 50:Ec50/Ic50:
----

References:

17167539
Inactivation mechanism of the beta-ketoacyl-[acyl carrier protein] reductase of bacterial type-II fatty acid synthase by epigallocatechin gallate.. Bing-Hui Li; Rui Zhang; Ya-Tao Du; Ying-Hui Sun; Wei-Xi Tian (2006) Biochemistry and cell biology display abstract
Epigallocatechin gallate (EGCG), a major compound from green tea, reversibly inhibits beta-ketoacyl-[acyl carrier protein] reductase (FabG) from Escherichia coli. In this study, we found that EGCG exhibited an atypical time-dependent inhibition of FabG, which possibly resulted from the EGCG-induced aggregation of FabG. It was observed that FabG inactivation and aggregation occurred nearly simultaneously, with a lag time that decreased with increasing EGCG concentration. These results suggest that some chemical reactions, required for aggregation and inactivation, occurred during the lag time. Since EGC was detected by HPLC after the incubation of EGCG with FabG, EGCG probably covalently modified FabG. These further results showed that 1 tetramer of FabG must be modified by several, possibly 4, EGCG molecules before the formation of FabG aggregates. FabG aggregation was a first-order reaction independent of protein concentration. Due to an initial lag time, the first-order rate of aggregation gradually increased, reaching a maximal and constant value. The effect of increasing concentration of EGCG on the first-order rate constant for aggregation indicated that EGCG bound to FabG by affinity labeling. Based on the results, we propose a mechanism for the interaction of EGCG with FabG:EGCG first binds reversibly to each subunit of FabG, followed by covalent modification and then aggregation of the 4 EGCG-modified subunits.