Home
Drugs
Targets
Pathways
Ontologies
Cyp450s
Adv.search
Help/FAQ

Drug-Target Interaction

Drug

show drug details
PubChem ID:2214
Structure:
Synonyms:
1-(4-hydroxy-3-methoxyphenyl)-ethanone
1-(4-hydroxy-3-methoxyphenyl)ethan-1-one
1-(4-Hydroxy-3-methoxyphenyl)ethanone
3-Methoxy-4-hydroxyacetophenone
3-Metoksy-4-hydroksyacetofenon
3-Metoksy-4-hydroksyacetofenon [Polish]
4'-Hydroxy-3'-methoxyacetophenone
4-08-00-01814 (Beilstein Handbook Reference)
4-Acetyl-2-methoxyphenol
4-Hydroxy-3-methoxyacetophenone
4-Hydroxy-3-methoxyphenyl methyl ketone
498-02-2
A10809_ALDRICH
AA-504/20839006
AB1003774
AC-11656
AC1L1D6F
AC1Q46A5
AC1Q7AD6
Acetoguaiacon
Acetoguaiacone
Acetophenone, 4'-hydroxy-3'-methoxy-
ACETOPHENONE,4-HYDROXY,3-METHOXY ACETOVANILLON
ACETOPHENONE,4-HYDROXY,3-METHOXY ACETOVANILLON
Acetovanillon
Acetovanillone
Acetovanilone
Acetovanyllon
AI3-15892
AKOS000120562
Apocynin
Apocynine
AR-1H7512
BB_NC-2250
bmse000584
bmse010031
BRN 0637373
C056165
C11380
C9H10O3
CCRIS 7285
CHEBI:2781
CHEMBL346919
EINECS 207-854-5
Ethanone, 1-(4-hydroxy-3-methoxyphenyl)-
H0261
I01-7005
LS-13569
MLS001304972
MolPort-000-000-274
NCGC00247065-01
nchembio.83-comp20
NSC 209524
NSC209524
NSC2146
SBB008060
SMR000752909
W508454_ALDRICH
WLN: 1VR DQ CO1
ZINC00162515

Target

show target details
Uniprot ID:DUOX1_RAT
Synonyms:
Dual oxidase 1
EC-Numbers:1.11.1.-
1.6.3.1
Organism:Rat
Rattus norvegicus
PDB IDs:-

Binding Affinities:

Ki: Kd:Ic 50:Ec50/Ic50:
----
----
----

References:

10328994
Differential effects of some cell signalling inhibitors upon nitric oxide synthase expression and nuclear factor-kappaB activation induced by lipopolysaccharide in rat aortic smooth muscle cells.. J Zhou; A D Struthers; G A Lyles (1999) Pharmacological research : the official journal of the Italian Pharmacological Society display abstract
Treatment of rat aortic smooth muscle cells (RASMC) with 1 or 100 microg ml-1 lipopolysaccharide (LPS) for 20-24 h led to expression of the inducible form of nitric oxide synthase (iNOS) as detected by Western blotting for iNOS protein, and by determination of increased cellular nitrite formation. LPS-induced nitrite production was inhibited almost completely by concomitant treatment of cells with LPS and either (a) pyrrolidine dithiocarbamate (PDTC, 25 microm), an antioxidant inhibitor of NF-kappaB activation; (b) N-tosyl-L-phenylalanine chloromethyl ketone (TPCK, 20 and 40 microm), a proteasomal inhibitor which prevents NF-kappaB activation; (c) nordihydroguaiaretic acid (NDGA, 10 and 50 microm), a lipoxygenase inhibitor; or (d) apocynin (2, 3.5 and 5 m m), an inhibitor of NADPH oxidase. Gel-shift assays using nuclear protein extracts incubated with a 32P-labelled DNA binding probe for NF-kappaB detected two electrophoretically separable complexes containing NF-kappaB. A faster migrating complex obtained when using both LPS-treated and untreated cells appeared to represent a basal or constitutive NF-kappaB activity, whereas a slower band was found only after LPS-treatment. The latter band was abolished when using cells treated for 1 h with LPS in the presence of PDTC (25 microm) or TPCK (20 microm), but was not inhibited by NDGA (50 microm) or apocynin (3.5 m m). The basal band was unaffected by any of the cell signalling inhibitors. Densitometry of Western blots indicated that LPS-induced iNOS protein expression was inhibited to a similar extent (between 74 and 87%) by the latter concentrations of PDTC, TPCK, NDGA and apocynin. The ability of PDTC and TPCK to abolish LPS-specific NF-kappaB activation, while also producing considerable inhibition of iNOS protein expression and nitrite formation, suggests that induction of iNOS by LPS in RASMC involves NF-kappaB-dependent transcription. However, the failure of NDGA and apocynin to prevent NF-kappaB activation, at least during early stages (up to 1 h) of its nuclear accumulation, suggests that these agents may affect cell signalling pathways which regulate iNOS induction by another mechanism to be determined.
12847113
AT1 blockade prevents glucose-induced cardiac dysfunction in ventricular myocytes: role of the AT1 receptor and NADPH oxidase.. Jamie R Privratsky; Loren E Wold; James R Sowers; Mark T Quinn; Jun Ren (2003) Hypertension display abstract
Enhanced tissue angiotensin (Ang) II levels have been reported in diabetes and might lead to cardiac dysfunction through oxidative stress. This study examined the effect of blocking the Ang II type 1 (AT1) receptor on high glucose-induced cardiac contractile dysfunction. Rat ventricular myocytes were maintained in normal- (NG, 5.5 mmol/L) or high- (HG, 25.5 mmol/L) glucose medium for 24 hours. Mechanical and intracellular Ca2+ properties were assessed as peak shortening (PS), time to PS (TPS), time to 90% relengthening (TR90), maximal velocity of shortening/relengthening (+/-dL/dt), and intracellular Ca2+ decay (tau). HG myocytes exhibited normal PS; decreased +/-dL/dt; and prolonged TPS, TR90, and tau. Interestingly, the HG-induced abnormalities were prevented with the AT1 blocker L-158,809 (10 to 1000 nmol/L) but not the Janus kinase-2 (JAK2) inhibitor AG-490 (10 to 100 micromol/L). The only effect of AT1 blockade on NG myocytes was enhanced PS at 1000 nmol/L. AT1 antagonist-elicited cardiac protection against HG was nullified by the NADPH oxidase activator sodium dodecyl sulfate (80 micromol/L) and mimicked by the NADPH oxidase inhibitors diphenyleneiodonium (10 micromol/L) or apocynin (100 micromol/L). Western blot analysis confirmed that the protein abundance of NADPH oxidase subunit p47phox and the AT1 but not the AT2 receptor was enhanced in HG myocytes. In addition, the HG-induced increase of p47phox was prevented by L-158,809. Enhanced reactive oxygen species production observed in HG myocytes was prevented by AT1 blockade or NADPH oxidase inhibition. Collectively, our data suggest that local Ang II, acting via AT1 receptor-mediated NADPH oxidase activation, is involved in hyperglycemia-induced cardiomyocyte dysfunction, which might play a role in diabetic cardiomyopathy.
17324142
Inhibition of NAD(P)H oxidase reduces fibronectin expression in stroke-prone renovascular hypertensive rat brain.. Chunmei Cui; Alex F Chen; Zongpei Jiang; Qingqing Wu; Jianwen Lin; Hongmei Wen; Jinsheng Zeng (2007) Clinical and experimental pharmacology & physiology display abstract
1. The aim of the present study was to test the hypothesis that in vivo chronic inhibition of NAD(P)H oxidase reduces cerebrovascular fibronectin expression in stroke-prone renovascular hypertensive rats (RHRSP). 2. The RHRSP model was induced by two clips and NAD(P)H oxidase was inhibited with apocynin. The mRNA and protein expression of NAD(P)H oxidase subunit p22(phox) in brains of RHRSP and Sprague-Dawley (control) rats was determined using real-time reverse transcription-polymerase chain reaction, western blot and immunohistochemistry. The expression of fibronectin protein was localized immunohistochemically in cerebral vessels and then quantified by western blot. 3. Cerebrovascular fibronectin levels in RHRSP (n = 6) were significantly higher than control (n = 5) levels 8 weeks after operation (1.29 +/- 0.04 vs 1.15 +/- 0.02, respectively; P = 0.007). The p22(phox) immunopositive reactivity was localized in the cerebral vasculature of control rats and RHRSP. Furthermore, chronic treatment of RHRSP with apocynin, a selective NAD(P)H oxidase inhibitor, in the drinking water for 4 weeks (1.5 mmol/L, 5 weeks after operation) resulted in a significant decrease in the expression of p22(phox) protein (0.85 +/- 0.01 vs 0.93 +/- 0.01 in non-treated RHRSP; n = 5; P = 0.002), with a concomitant reduction of fibronectin levels in the cerebral vasculature (1.31 +/- 0.03 vs 1.56 +/- 0.05 in non-treated RHRSP; n = 5; P = 0.002). No significant differences were detected in the expression of p22(phox) mRNA and protein between RHRSP (4 and 8 weeks after renal artery constriction) and the control group. 4. These findings suggest that the chronic inhibition of NAD(P)H oxidase in vivo by apocynin reduces cerebrovascular fibronectin levels, which may lessen hypertensive cerebrovascular fibrosis.