Home
Drugs
Targets
Pathways
Ontologies
Cyp450s
Adv.search
Help/FAQ

Drug-Target Interaction

Drug

show drug details
PubChem ID:202225
Structure:
Synonyms:
2751-09-9
AB00513798
AC1L483V
BPBio1_000145
BSPBio_000131
C12753
CHEMBL564085
D01322
DB01361
Evramicina
FT-0082364
HMS2089B10
HMS2095G13
LMPK04000042
Matromicina
NCGC00179654-01
Oleandocetine
Oleandomycin triacetate
Oleandomycin triacetyl ester
Oleandomycin, triacetate (ester)
Prestwick3_000036
Tao
Tao (TN)
Treolmicina
Triacetyloleandomycin
Triacetyloleandomycin (JAN)
Tribiocillina
Troleandomycin
Troleandomycin (USP/INN)
[(3R,5S,6S,7R,8S,9R,12R,13S,14S,15R)-6-[(2S,3R,4S,6R)-3-acetyloxy-4-(dimet
[(3R,5S,6S,7R,8S,9R,12R,13S,14S,15R)-6-[(2S,3R,4S,6R)-3-acetyloxy-4-dimethylamino-6-methyloxan-2-yl]oxy-8-[(2R,4S,5S,6S)-5-acetyloxy-4-methoxy-6-methyloxan-2-yl]oxy-5,7,9,12,13,15-hexamethyl-10,16-dioxo-1,11-dioxaspiro[2.13]hexadecan-14-yl] acetate
ATC-Codes:

Target

show target details
Uniprot ID:CP3A1_RAT
Synonyms:
CYPIIIA1
Cytochrome P450 3A1
P450-PCN1
EC-Numbers:1.14.14.1
Organism:Rat
Rattus norvegicus
PDB IDs:-

Binding Affinities:

Ki: Kd:Ic 50:Ec50/Ic50:
----

References:

16940989
Effects of enzyme inducers and inhibitors on the pharmacokinetics of metformin in rats: involvement of CYP2C11, 2D1 and 3A1/2 for the metabolism of metformin.. Y H Choi; M G Lee (2006) British journal of pharmacology display abstract
BACKGROUND AND PURPOSE: The types of hepatic microsomal cytochrome P450 (CYP) isozymes responsible for the metabolism of metformin in humans and rats have not been published to date. Therefore, a series of experiments using various inducers and inhibitors of CYP isozymes was conducted to find out what types of CYP isozymes are involved in the metabolism of metformin in rats. EXPERIMENTAL APPROACH: Metformin at a dose of 100 mg kg(-1) was administered intravenously to rats. The rats were pretreated with CYP inducers such as 3-methylcholanthrene, orphenadrine, isoniazid, and dexamethasone (major inducers of CYP1A1/2, 2B1/2, 2E1, and 3A1/2, respectively, in rats), or CYP inhibitors such as SKF-525 (a non-specific inhibitor of CYP isozymes), and sulfaphenazole, quinine, and troleandomycin (major inhibitors of CYP2C11, 2D1, and 3A1/2, respectively, in rats). The time-averaged non-renal clearance (CLNR) of metformin was compared with that of controls. KEY RESULTS: In rats pretreated with dexamethasone, the CLNR was significantly faster (57% increase) than for the controls. In rats pretreated with SKF-525-A, sulfaphenazole, quinine, and troleandomycin, the CLNR was significantly slower (24.3, 62.9, 77.6, and 78.7% decrease, respectively) than for the controls. However, the CLNR values did not significantly different in the rats pretreated with 3-methylencholanthrene, orphenadrine, and isoniazid compared with the controls. CONCLUSIONS AND IMPLICATIONS: Our data suggest that metformin was metabolized mainly via CYP2C11, 2D1, and 3A1/2 in rats. This result could contribute to understanding of the possible changes in metformin pharmacokinetics in disease models where CYP2C11 and/or 3A1/2 are altered.